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1 Lagrange形式の力学

1.1 Euler-Lagrange 方程式の簡潔な導出
f は、x, y, y′ で決まるものとし、汎函数 I を、

I ≡
∫ b

a

f(x, y, y′) dx

とする。さて、I が停留値を持つような f(x, y, y′) の形は何であろうか？ここで、停留値では、
f(x, y, y′)の形を少し変えた δI について、

δI ≈ 0

が成り立つ。函数 yは最初 y0(x)だったとする。これを、

y(x) = y0(x) + εη(x)

と変化させる。ここに、εは函数形を司る微小量で、η(x)は任意の函数である。固定端条件とし
て、η(a) = η(b) = 0であって、停留値をとる条件は、普通の微分で、

lim
ε→　 0

dI

dε
= 0

といえる。
ここで、函数 f(x(u, v), y(u, v))において、

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u

∂f

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
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であることを思い出して、上を計算する。

dI

dε
= d

dε

∫ b

a

f(x, y, y′) dx

=
∫ b

a

d
dε

f(x, y, y′) dx

=
∫ b

a

(∂f

∂y

∂y

∂ε
+ ∂f

∂y′
∂y′

∂ε

)
dx

=
∫ b

a

{∂f

∂y
η(x) + ∂f

∂y′ η′(x)
}

︸ ︷︷ ︸
部分積分を用いる

dx

=
[ ∂f

∂y′ η(x)
]b

a︸ ︷︷ ︸
固定端条件より 0

+
∫ b

a

η(x)
{∂f

∂y
− d

dx

( ∂f

∂y′

)}
dx

=
∫ b

a

η(x)
{∂f

∂y
− d

dx

( ∂f

∂y′

)}
dx

上は、∀η(x)について成り立つゆえ、この値が 0ならば、
∂f

∂y
− d

dx

( ∂f

∂y′

)
= 0

である。以上より、Euler-Lagrange 方程式と呼ばれる、
d

dx

( ∂f

∂y′

)
= ∂f

∂y

を得る。
解析力学の実用上では、一般化座標を q,系の Lagrangianを Lとして、

d
dt

(∂L

∂q̇

)
= ∂L

∂q

から、運動方程式を得ることができる。

2 Hamilton形式の力学

2.1 Hamiltonの正準方程式の簡潔な導出
Lagrange形式の定式化では、Lagrangianが時間に陽に依存しなければ、一般座標 qi と一般速度

q̇i を独立変数として力学を記述する。Hamilton形式では、一般座標 qi と一般運動量 pi を独立変数
にとり力学を記述せんとする。
一般運動量 pi は、

pi ≡ ∂L(q, q̇i)
∂q̇i
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と定める。まずは、Lagrangianの全微分を考える。

dL =
∑

i

( ∂L

∂qi
dqi + ∂L

∂q̇i
dq̇i

)
上で示した Euler-Lagrange 方程式と一般運動量の定義から、以下を得る。

dL =
∑

i

( d
dt

∂L

∂q̇i
dqi︸ ︷︷ ︸

E−L 方程式より

+ pidq̇i︸ ︷︷ ︸
一般運動量の定義から

)

=
∑

i

(
ṗidqi︸ ︷︷ ︸

一般運動量の定義から

+pidq̇i

)

さて、いま、
d(piq̇i) = pidq̇i + q̇idpi

ゆえに、
pidq̇i = d(piq̇i) − q̇idpi

を得る。これを用いれば、
dL =

∑
i

{
ṗidqi + d(piq̇i) − q̇idpi

}
d
( ∑

i

piq̇i − L
)

=
∑

i

(−pi)dqi +
∑

i

q̇idpi

である。ここに、
H ≡

∑
i

piq̇i − L

とおけば、これはエネルギー量で、Hamiltonianと呼ばれる量である。上は、

dH =
∑

i

{
(−ṗi)dqi + q̇idpi

}
と書ける。本式は Lagrangianの全微分の計算の帰結であった。今度は Hamiltonianを直接全微分
して、

dH =
∑

i

(∂H

∂qi
dqi + ∂H

∂pi
dpi

)
以上二式を比較すれば、以下の二式を得る。

q̇i = ∂H

∂pi

ṗi = −∂H

∂qi

これらは Hamiltonの正準方程式と呼ばれる。
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