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§ 1. 自然単位系 5

x 1:　自然単位系

¹h（Dirac定数，換算 Plank定数）は，Planck定数を 2¼で除したもので，量子力学の基本的な定数である。

¹h ´ h
2¼ = 1:0055£ kgm=s

2

光速 cは，特殊相対論の基本的な定数である。

c = 2:998£ 108m=s2

いま，c = ¹h = 1なる単位系をとり，自然単位系という。

問 1. 地球とアンドロメダとの距離 d = 250 光年（自然単位系）を，メートルを単位として表せ。

解

d = 2:5£ 106 £ 365£ 24£ 3600 s

= 7:9£ 1013 s =S
c=1 をかける

7:9£ 1013 £ 3£ 108W
1

m
s
¢ s

= 2:4£ 1022m

問 2. 陽子の質量は mp = 938MeV である。このとき，mp¡1 を，メートルを単位として表せ。ただし，1 eV = 1:6 £
10¡19 kgm2=s2 である。

解

mp¡1 = !938£ 108 eV9¡1
= $938£ 108 £ 1:6£ 10¡19 kgm2

s2
<¡1

=S

¹hc=1

!938£ 108 £ 1:6£ 10¡199¡1 £ 1:055£ 10¡34 £ 3£ 108 s2

kgm2
kgm2

s
m
s

= 2:1£ 10¡16m

自然単位系では，

[質量] = � 1
長さ ˜ = � 1

時間 ˜
である。

x 2:　特殊相対論

特殊相対論は 2つの原理からなっていた。

・特殊相対性原理Ý任意の慣性系は対等である。
・光速度不変Ý光速は一定値。

x方向に相対運動する座標系において，Lorentz変換は，

) t0x0y0
z0
A= ) ° ¡°¯ 0 0

¡°¯ ° 0 0
0 0 1 0
0 0 0 1

A)txy
z

A
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ここに，

° = 1
C

1¡ ¯2

¯ = vc

である。Lorentz変換は，Einsteinの縮約

A¹ºBº =
P

º=0;1;2;3
A¹ºBº

を用いれば，

x¹ 7¡! x¹
0

= ¤¹
0

ºxº

となる。ただし， �¤¹0º• = )¤000 : : : ¤003ÞÞÞ
ÞÞÞ

ÞÞÞ

¤3
0

0 : : : ¤3
0

3

A
= ) ° ¡°¯ 0 0

¡°¯ ° 0 0
0 0 1 0
0 0 0 1

A
である。
上記の 2つの原理から，距離の不変性

(¢t0)
2
¡ (¢x0)

2
¡ (¢y0)

2
¡ (¢z0)

2
= (¢t)

2
¡ (¢x)

2
¡ (¢y)

2
¡ (¢z)

2

が要請される。計量テンソル

g¹º =+1 ¡1 0
¡1

0 ¡1

C
を用いれば，

¢s2 = g¹º¢x¹¢xº

= g¹0º0¢x¹
0

¢xº
0

である。一般の Lorentz変換は，距離 ¢s2 を変えない変換

x¹ 7¡! x¹
0

= ¤¹
0

ºxº

である。以降，原点からの距離を考えるゆえ，¢x0 = x0 とする。¢s2 を変えないゆえ，

g¹ºx¹xº = g¹0º0x¹
0

xº
0

= g¹0º0¤¹
0

¹x¹¤º
0

ºxº

従って，

g¹º = g¹0º0¤¹
0

¹¤
º0
º

が云える。また，x¹ 7¡! x¹0 = ¤¹0ºxº の逆変換 x¹0 7¡! x¹ = ¤¹º0xº0 を考えると，

x¹ = ¤¹º0xº
0

= ¤¹º0¤
º0
½x½
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であるゆえ，

¤¹º0¤
º0
½ = ±¹½ = U1 (¹ = ½)

0 (¹ Ë ½)

がわかる。
物理量は，Lorentz変換による応答で分類できて，

・ &0
0
>テンソル 7¡!スカラー，Lorentz変換に対して，Aの成分は変換しない。

・ &1
0
>テンソル 7¡!反変ベクトル，A¹ 7¡! A¹0 = ¤¹0ºAº

・ &0
1
>テンソル 7¡!共変ベクトル，A¹ 7¡! A¹0 = ¤º¹0Aº

x 3:　量子力学

Schrödinger方程式は

i¹h @@t ª = $¡ ¹h2
2m r

2 +V(x)<ª（Schrödinger方程式）

i @@t ª = #¡ 1
2m r

2 +V(x);ª（自然単位系）
である。

問 1. Schrödinger 方程式を”導出”せよ。

解 関係式

E =
p2

2m +V(x)

に，量子化の手続き E! i@t; p!¡ir を導入することによる。
HamiltonianH

H = ¡
1
2m

@2

@x2
+V(x)

を用いて，Schrödinger方程式は

i @@tª =H ª

と書ける。
確率の流れとしての解釈を思い出そう。（簡単のため 1次元を考える。）

½ = jªj2

j = i
2m �# @@xª¤;ª¡ª # @@xª;—

は，確率の流れの方程式

@
@t½+

@
@xj = 0

を満たす。
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問 2.

@
@t½+

@
@xj = 0

の成立を，計算によって確かめよ。

解
@
@t½ = # @@tª¤;ª+ª¤ # @@tª;
= ¡

i
2m

@
@x �# @@xª¤;ª¡ª¤ # @@xª;—

= ¡
@
@xj

より従う。
これは，容易に 3次元に拡張できて，

@
@t½+r ¢ j = 0

が成り立つ。

i¹h @@t ª = $¡ ¹h2
2m r

2 +V(x)<ª（Schrödinger方程式）

i @@t ª = #¡ 1
2m r

2 +V(x);ª（自然単位系）
は，確率の流れの方程式

@
@t½+r ¢ j = 0

を満たす。
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x 4:　素粒子標準模型

現在知られている素粒子標準模型を概観しよう。

素粒子標準模型

lepton quark gauge Higgs

第一世代 第二世代 第三世代 第一世代 第二世代 第三世代 boson 粒子

粒子種
e ¹ ¿ u c t

G, W§, Z0, A H
ºe º¹ º¿ d s b

従う方程式 Dirac Maxwell Klein-Gordon

proton（uud）や neutron（udd）など，quark３つで作られている粒子を baryonと呼び，quarkと antiqurkの２
つで作られている粒子を mesonと呼ぶ。baryonとmesonを合わせて，hadronと呼ぶ。
素粒子間に働く，基本的な力ないしは相互作用として，以下の４つが知られている。これらの基本的相互作用は，

gauge原理により統一的に理解され，gauge bosonと呼ばれる粒子が媒介する（とされている。）。

・ electromagnetic interaction（電磁相互作用）
– 長距離力で，photonと呼ばれる gauge bosonを媒介にして荷電粒子間に伝わる力。

・ strong interaction（強い相互作用）
– 原子核内の proton や neutron を，より詳しく言えば quark に働く相互作用。短距離力で，電磁気力の
100倍程度の強さを持つ。gluonと呼ばれる gauge bosonが媒介する。

・ weak interaction（弱い相互作用）
– ¯崩壊などが一例。短距離力で，媒介粒子である weak bosonが protonの 100倍程度の質量をもってい
るため，非常に弱い。

・ gravitational interaction（重力相互作用）
– すべての素粒子間に働く長距離力で，gravitonが媒介する（とされている。）。

ここで，各粒子が従う方程式系は，

Klein-Gordon方程式：!@¹@¹ +m29Á = 0
Dirac方程式：!i°¹@¹ ¡m9Ã = 0

Maxwell方程式：@¹F¹º = jº

であり，以下で導入してゆく。

x 5:　 Klein-Gordon方程式

前章で導入した Schrödinger方程式は，

i @@t ª = #¡ 1
2m r

2 +V(x);ª
であった。しかるに，この方程式は，時間の一階微分と空間の二階微分を含み，相対論的な式ではない。そこで，
Schrödinger方程式を，相対論的に”拡張”してみよう。

問 1. 相対論的エネルギーの関係式を書け。自然単位系を用いよ。

解

E2 = p2 +m2 (Ã E2 = (pc)
2
+ !mc292)
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問 2. 相対論的エネルギーの関係式に量子化の手続きを導入して，Klein-Gordon 方程式を導け。

解

¡
@2

@t2
Á(t;x) = !¡r2 +m29Á(t;x)

相対論的な表式に書き直しておくと， !@¹@¹ +m29Á(t; x) = 0
となる。

Klein-Gordon方程式 !@¹@¹ +m29Á(t; x) = 0
ここで，d’Alembertian □ ´ @¹@¹ を導入すると，!□+m29Á(t; x) = 0
となる。

x 6:　 Klein-Gordon方程式の確率解釈の問題

§3で述べたように，Schrödinger方程式を満たす波動函数 Ãは確率解釈が可能であった。しかるに，Klein-Gordon

方程式ではそれができない。すなわち，Schrödinger方程式を満たす ½(t;x) = jÃ(t;x)j2 に対して，確率解釈

½(t;x) = 時刻 t，位置 xに粒子が見いだされる確率密度

が可能となるが，Klein-Gordon方程式ではそうではないことを見る。ここで，定義より，確率解釈が可能となるた
めの必要条件が，½(t;x) ¸ 0であることに注意しておく。
さて，平面波解

Á = exp
¡

¡iEt+ ipxx+ ipyy+ ipzz
¢

を Klein-Gordon方程式に代入すると!¡E2 + p2 +m29 exp¡¡iEt+ ipxx+ ipyy+ ipzz¢ = 0
∴ E = §

C

p2 +m2（正エネルギー解，負エネルギー解）

を得る。ここで，

½ = i
2m $Á¤ @Á@t ¡ @Á¤@t Á<

j¹ = ¡ i
2m [Á

¤@¹Á¡ (@¹Á¤)Á]

で定義しておくと j¹ は次に示す流れの方程式

@¹j¹ = 0

を満たす。これは，式??の相対論的表式であり，Klein-Gordon方程式とその複素共役から導ける。

問 1. これを示せ。
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解 （今のところ LATEX 打ちを略）
確率密度についてみよう。じつは，½ ¸ 0は保証されていない。

問 2. 先の ½ の表式に平面波解を代入し，½ ⪌ 0 を確認せよ。

解

½ = i
2m $Á¤ @Á@t ¡ @Á¤@t Á<

=
E
m U> 0 : 正エネルギー解

< 0 : 負エネルギー解
以上より，Klein-Gordon方程式において

・ ½ < 0
・粒子の消滅・生成が記述できない

という問題点があらわになった。この点については，場の量子論で解決を見る。

x 7:　 Dirac方程式の簡単な導入

Diracのアイデアに従って，Dirac方程式を導入してみよう。Einsteinの関係式 E2¡p2¡m2=0を因数分解して
みるのだが

E2 ¡ p2 ¡m2 = #E+Cp2 +m2; #E¡Cp2 +m2;
などとすると，うまくいかないことがわかる。それは，一つには，どちらの因数を 0ととるべきか（正エネルギー解，
負エネルギー解）がわからないこと。そして時間と空間が対等な方程式を定められないことなどがあげられる。そこ
で，Diracは，

E2 ¡ p2 ¡m2 = p¹p¹ ¡m2

= (°ºpº +m) !°¹p¹ ¡m9 = 0
とできるとした。

問 1. °¹p¹ ¡m = 0 として，量子化の手続きを導入してみよ。（じつは，どちらの因数をとっても同等である。）

解 !i°¹@¹ ¡m9Ã(t;x) = 0
この方程式を Dirac方程式という。ここで，°は，

°0 = $I 0
0 ¡I<

°i = $ 0 ¾i
¡¾i 0 <

であるということが知られている。

x 8:　Wyle方程式

x 9:　Maxwell方程式の相対論的記述

補遺 §14の議論を自然単位系に戻ってまとめなおすと，F¹º = @¹Aº ¡ @ºA¹ として，
@¹F¹º = jº ÝÝ 1
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と書ける。

相対論的的記述による，Maxwell方程式

@¹F¹º = jº

実際，Gaussの法則，Ampereの法則は，1を満たす。単磁荷の式と，Faradayの電磁誘導の法則は，Bianchiの
恒等式から，同様に1を満たす。
問 1. Bianchiの恒等式

@½F¹º + @¹Fº½ + @ºF½¹ = 0

を示せ。

解
@½ (@¹Aº ¡ @ºA¹) + @¹ (@ºA½ ¡ @½Aº) + @º (@½A¹ ¡ @¹A½) = 0

より従う。
いま，Maxwell方程式を満たす A¹ があるとする。この時，任意の函数 fに対して， ¹A¹ = A¹ ¡ @¹fも同様に

Maxwell方程式を満たす。

問 2. これを示せ。

解
¹F¹º = @¹ ¹Aº ¡ @º ¹A¹

= @¹ (Aº ¡ @ºf)¡ @º (A¹ ¡ @¹f)

= F¹º

つまり，Maxwell方程式の解には不定性がある。この時，A¹ ! A¹¡ @¹fとすることを gauge変換といい，この
変換の下でのMaxwell方程式の対称性のことを gauge対称性と呼ぶ。

A¹ ! A¹ ¡ @¹f ：gauge変換

x 10:　質点の解析力学～Lagrange形式～（工事中）

L を系の Lagrangian，q; _qを一般化座標，一般化運動量として，Euler-Lagrange方程式は

d
dt
@L
@ _q =

@L
@q

x 11:　質点の解析力学～Hamilton形式～

Lagrange形式と同等な時間発展を記述する別の方法に，Hamilton形式がある。Hamiltonianを

H (x;p) = [p _x¡L (x; _x)] _x=_x(x;p) ÝÝ 2

とし，共役運動量 pを

p ´ @L@ _x
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と定める。 _x = f(x;p)の形に変形して，式2に代入することで，以下の，Hamiltonの正準方程式を得る。ここ
に，Poisson括弧式を

ff;ggp =
@f
@x
@g
@p ¡

@f
@p
@g
@x

と定めた。

Hamiltonの正準方程式

dx
dt
=
@H (x;p)
@p = fx;H gp

dp
dt
= ¡

@H (x;p)
@x = fp;H gp

x 12:　場の Lagrange形式（工事中）

Lを Lagrangian密度とすると，場の Euler-Lagrange方程式は

@¹ % @L
@ !@¹Á9= = @L@Á ÝÝ 3

Lを Lagrangian密度とすると，場の Euler-Lagrange方程式は

@¹ % @L
@ !@¹Á9= = @L@Á

x 13:　 K-G場，Dirac場，Maxwell gauge場の作用

K-G場の作用は

S [Á] =
Z

d4x� 1
2
!@¹Á9 (@¹Á)¡ m22 Á2˜a

L

=

Z

d4x� 1
2
g®¯@®Á@¯Á¡

m2

2
Á2˜

である。

問 1. これを確かめよ。

解 実際，3について計算すると，

@L
@Á =

@
@Á $¡ m2

2
Á2< = m2Á

@¹ % @L
@ !@¹Á9= = @mu # 12 g¹¯@¯Á+ 12 g®¹@®Á; = @¹ (@¹Á)

となるゆえ， !@¹@¹ +m29Á = 0
が従う。
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x 14:　 Gauge変換（電磁気学 3,4より）

本章の議論には，MKSA単位系を用いる。
Maxwell方程式を書き並べると

r£E+
@
@t B = 0

r£B¡ "0¹0
@
@t E = ¹0j

r ¢E =
½
"0

r ¢B = 0

である。ここで，電場Eと磁束密度Bはそれぞれ，電位 Áと vector potentialAをもちいて

E = ¡rÁ

B = r£A

であった。Maxwell方程式をより簡潔な形で述べることを考えよう。
まず，vector解析の恒等式

r ¢ (r£A) = 0

により，r ¢B = 0は必ず成り立つ。ゆえに，B = r£Aを仮定すれば，単磁荷の式は法則から除ける。
更に、Faradayの法則にB = r£Aを代入して，

r£E+
@
@t
(r£A) = r£ #E+ @

@t A;
となる。ここで，恒等式

r£ (rÁ) = 0

を考えると，式$において，
¡r~Á ´ E+ @

@t A

と置けば，法則から除けるとわかる。
Ampere-Maxwellの法則，および Gaussの法則にもこの表式を代入して整理すると，$r2 ¡ "0¹0 @2@t2 <A¡r #r ¢A+ "0¹0 @@t Á; = ¡¹0j

r2Á+r ¢ # @@t A; = ¡ ½"0
を得る。このとき、電場と磁場は以下のように書ける。

B = r£A

E = ¡r~Á¡ @
@t A
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gauge 変換

B = r£A

E = ¡r~Á¡ @
@t A

の変換により，Maxwell方程式は$r2 ¡ "0¹0 @2@t2 <A¡r #r ¢A+ "0¹0 @@t Á; = ¡¹0j
r2Á+r ¢ # @@t A; = ¡ ½"0

と整理できた。ただし，スカラー関数 Âを用いて

A0 = A+rÂ

Á0 = Á¡ @
@t Â

と変換しても、同じEと Bを与える。この変換のことを gauge変換という。このことは，「Maxwell方程式は
gauge不変である。」という。

さて，二式になった Maxwell方程式をさらに整理してゆく。Ampere-Maxwell の法則のなれの果ての第二項が 0
になると，表式は，Aのみで表せる。すなわち

r ¢A+ ¹0"0
@
@t Á = 0

となると， $r2 ¡ "0¹0 @2@t2 <A = ¡¹0j
となる。この条件は，Lorenz条件と呼ばれている1)。Gaussの法則は，

r2Á+ @
@t #¡¹0"0 @@t Á; = ¡ ½"0$r2 ¡ ¹0"0 @2@t2 <Á = ¡ ½"0

となる。ここまでの手続きで，Maxwell方程式は$r2 ¡ 1

c2
@2t<A = ¡¹0j$r2 ¡ 1

c2
@2t<Á = ¡ ½"0

r ¢A+
1

c2
@tÁ = 0

と整理できた。
これを成分で書き下すと， $r2 ¡ 1

c2
@2t<Ax = ¡¹0jx$r2 ¡ 1

c2
@2t<Ay = ¡¹0jy$r2 ¡ 1

c2
@2t<Az = ¡¹0jz$r2 ¡ 1

c2
@2t<Á = ¡ ½"0

1) Lorentzではなく Lorenzである。
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ここで，4元ベクトル

A¹ = )Á=cAxAy
Az

A ; j¹ = )½cjxjy
jz

A
を用いると，さらに整理できて， $r2 ¡ 1

c2
@2t<A¹ = ¡¹0j¹

となる。ここで，□ ´ r2 ¡ 1
c2
@2t としてやると，

□A¹ = ¡¹0j¹

である。


