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本レポートでは，Pauli行列は，

¾1 = $0 11 0< ; ¾2 = $0 ¡i
i 0 < ; ¾3 = $1 0

0 ¡1<
とする。また，

@¹ ´
@
@x¹ (¹ = 0; 1; 2; 3)

と定め，断りなく用いることがある。また，Einsteinの縮約規約を用いる。
1.

Ñ
Klein-Gordon方程式を書き下すと，!@¹@¹ +m29Á(t;x) = !□+m29Á(t;x)

= "@2t ¡ @2x ¡ @2y ¡ @2z +m2:Á(t;x)
= 0

となる。
Ò
平面波解 Á(t;x) = exp (¡iEt+ ip ¢ x)を Klein-Gordon方程式に代入すると,!¡E2 + p2 +m29 exp¡¡iEt+ ipxx+ ipyy+ ipzz¢ = 0

∴ E = §
C

p2 +m2（正エネルギー解，負エネルギー解）

となる。
Ó

½ = i
2m $Á¤ @Á@t ¡ @Á¤@t Á<

j = ¡
i
2m [Á

¤rÁ¡ (rÁ¤)Á]

とし， 4元ベクトル j¹ = (½;j)を

j¹ = ¡ i
2m [Á

¤@¹Á¡ (@¹Á¤)Á]

で定義しておくと，j¹ は次に示す流れの方程式

@
@t ½(t;x) +r ¢ j(t;x) = @¹j

¹ = 0

を満たす。以下では，これを示す。
Klein-Gordon方程式とその複素共役をそれぞれ!@¹@¹ +m29Á = 0!@¹@¹ +m29Á¤ = 0
とする。これらに対して，それぞれ Á¤，Áをかけて

Á¤@¹@¹Á¡ Á@¹@¹Á¤ = 0
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を得る。ここで，

@¹ (Á¤@¹Á) = !@¹Á¤9 (@¹Á) + Á¤@¹@¹Á
@¹ (Á@¹Á¤) = !@¹Á9 (@¹Á¤) + Á@¹@¹Á¤

であるから，

@¹ (Á¤@¹Á)¡ @¹ (Á@¹Á¤) = 0

となり，これを整理すると

@¹ [Á¤@¹Á¡ (@¹Á¤)Á] = 0

∴ @¹j¹ = 0

となる事より，題意は示された。
確率密度についてみると，½ ¸ 0は保証されていない。実際，平面波解を代入すると

½ = i
2m $Á¤ @Á@t ¡ @Á¤@t Á<

=
i
2m [exp(iEt¡ ip ¢ x)(¡iE) exp(¡iEt+ ip ¢ x)¡ (iE) exp(iEt¡ ip ¢ x) exp(¡iEt+ ip ¢ x)]

=
E
m U> 0 : 正エネルギー解

< 0 : 負エネルギー解

となり，½ ⪌ 0となることがわかる。このため，Klein-Gordon方程式は確率密度の解釈を与えることができない。
2.

Ñ
Hamiltonianを

H = ¡i®x@x ¡ i®y@y ¡ i®z@z +m¯

とする。Schrödinger型の方程式

i@tÃ =H Ã

の両辺に i@t を作用させると，

¡@2tÃ = (i@t)
2Ã =H (i@tÃ) =H (H Ã) =H 2Ã

となるゆえ，@2tÃ = ¡H 2Ãである。ここで，

H 2 = !¡i®x@x ¡ i®y@y ¡ i®z@z +m¯92
= ¡(®x)2@2x ¡ (®

y)2@2y ¡ (®
z)2@2z +m

2¯2

¡ (®x®y + ®y®x)@x@y ¡ (®y®z + ®z®y)@y@z ¡ (®z®x + ®x®z)@z@x

¡ im(®x¯+ ¯®x)@x ¡ im(®y¯+ ¯®y)@y ¡ im(®z¯+ ¯®z)@z

よって，求める式は

@2tÃ = �(®x)2@2x + (®y)2@2y + (®z)2@2z ¡m2¯2
+ (®x®y + ®y®x)@x@y + (®y®z + ®z®y)@y@z + (®z®x + ®x®z)@z@x

+im(®x¯+ ¯®x)@x + im(®y¯+ ¯®y)@y + im(®z¯+ ¯®z)@z•Ã
Ò

(1)で求めた式が，Klein-Gordon型の方程式

(@2t ¡r
2 +m2)Ã = 0 () @2tÃ = (@

2
x + @

2
y + @

2
z ¡m

2)Ã

と一致するための条件は，係数比較から
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・ 2階微分の係数より：(®x)2 = (®y)2 = (®z)2 = ¯2 = I
・ cross termの係数より：®i®j + ®j®i = 0 (i Ë j)

・ 1階微分の係数より：f®i;¯g = ®i¯+ ¯®i = 0

これらを満たす 4£ 4行列の組み合わせを 3通り挙げる。ここで ¾i は Pauli行列，Iは 2£ 2単位行列である。
1. Dirac-Pauli表示

®i = % 0 ¾i

¾i 0
= ; ¯ = $I 0

0 ¡I<
2. chiral 表示

®i = %¡¾i 0

0 ¾i= ; ¯ = $0 I
I 0<

3.

®i = % 0 ¾i

¾i 0
= ; ¯ = $¡I 0

0 I<
これは ¯0 = ¡¯ としたものであり，¯02 = ¯2 = I および f®i;¯0g = ¡f®i;¯g = 0 を満たすため，条件に適合
する。
Ó

chiral表示を用いる。まず，Dirac場の上 2 成分と下 2成分を分離し，

Ã = $ÃLÃR<
とする。
m = 0 の場合，質量項 m¯ を含む項が消滅するので，¯ に関する条件（¯2 = I および f®i;¯g = 0）が不要と
なる。
m Ë 0の場合，Dirac方程式は 4成分が質量項を通じて混ざり合い，代数的な条件を満たすために最小で 4£ 4行
列が必要であった。しかしm = 0の場合，chiral 表示を用いると Dirac方程式は$¡i¾¹@¹ 0

0 ¡i¹¾¹@¹
<$ÃLÃR< = 0

となり，

i¾¹@¹ÃR = 0; i¹¾¹@¹ÃL = 0

という 2つの独立した方程式（Weyl方程式）に分離する。これらは 2£ 2行列（Pauli行列）のみで記述可能であり，
¯行列を必要としない点がm Ë 0の場合と本質的に異なる。ÃL;ÃR を，Weyl場と呼ぶ。
3.

Ñ
相対論的Maxwell方程式は，電磁場テンソル F¹º を用いて

@¹F¹º = jº ÝÝ 1

と書ける。諸量は，講義中に与えられたものとする。
1の º = 0は Gaussの法則，º = iは Ampereの法則である。実際，º = 0について，F00 = 0に注意すると

@¹F¹0 = @jFj0

= @j !@jA0 ¡ @0Aj9
= @j !¡@jÁ+ @0Aj9
= r ¢E

= j0 = ½
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であり，Gaussの法則を満たす。Ampereの法則は º Ë 0について，i = 1成分を調べればよく，

@0F01 + @jFj1 = @0 !@0A1 ¡ @1A09+ @j !@jA1 ¡ @1Aj9
= @0 !@0A1 ¡ @1A09+ @2 !@2A1 ¡ @1A29+ @3 !@3A1 ¡ @1A39（j = 1は，F00 = 0）
= @0 (¡@0A1 + @1A0) + @2 (@2A1 ¡ @1A2) + @3 (@3A1 ¡ @1A3)

= ¡@0E1 + (@2B3 ¡ @3B2)

= j1

より従う。i = 2; 3についても同様。
単磁荷の式と，Faradayの電磁誘導の法則は，Bianchiの恒等式

@½F¹º + @¹Fº½ + @ºF½¹ = 0

から，ただちに従う。
ここで，Bianchiの恒等式は，

@½ (@¹Aº ¡ @ºA¹) + @¹ (@ºA½ ¡ @½Aº) + @º (@½A¹ ¡ @¹A½) = 0

より従う。
単磁荷の式は，¹ = 1; º = 2;½ = 3とした場合を考えればよく，

@3F12 + @1F23 + @2F31 = @3 !@1A2 ¡ @2A19+ @1 !@2A3 ¡ @3A29+ @2 !@3A1 ¡ @1A39
= @3B3 + @1B1 + @2B2
= r ¢B = 0

として従う。
Faradayの法則の，第 3成分は，¹ = 0; º = 1;½ = 2とした場合を考えればよく，

@2F01 + @0F12 + @1F20 = @2 !@0A1 ¡ @1A09+ @0 !@1A2 ¡ @2A19+ @1 !@2A0 ¡ @0A29
= @2E1 ¡ @0B3 ¡ @1E2

= (r£E)3 ¡ @0B3 = 0

として従う。他成分も同様。
Ò
いま，Maxwell方程式を満たす A¹ があるとする。この時，任意の函数 fに対して， ¹A¹ = A¹ ¡ @¹fも同様に

Maxwell方程式を満たす。これは，次の計算

¹F¹º = @¹ ¹Aº ¡ @º ¹A¹

= @¹ (Aº ¡ @ºf)¡ @º (A¹ ¡ @¹f)

= F¹º

より従う。
4.

Ñ
Lie群 SO(3) の構造定数を求める。SO(3) の生成子 T は以下で与えられる。

Tx = '0 0 0
0 0 ¡i
0 i 0

? ; Ty = ' 0 0 i
0 0 0
¡i 0 0

? ; Tz = '0 ¡i 0
i 0 0
0 0 0

?
実際に交換関係 [Ta;Tb] = TaTb ¡TbTa を計算する。
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まず [Tx;Ty] について,

[Tx;Ty] = '0 0 0
0 0 ¡i
0 i 0

?' 0 0 i
0 0 0
¡i 0 0

?¡ ' 0 0 i
0 0 0
¡i 0 0

?'0 0 0
0 0 ¡i
0 i 0

?
= ' 0 0 0
¡1 0 0
0 0 0

?¡ '0 ¡1 0
0 0 0
0 0 0

?
= ' 0 1 0
¡1 0 0
0 0 0

?
= i'0 ¡i 0

i 0 0
0 0 0

?
= iTz

次に [Ty;Tz] について,

[Ty;Tz] = ' 0 0 i
0 0 0
¡i 0 0

?'0 ¡i 0
i 0 0
0 0 0

?¡ '0 ¡i 0
i 0 0
0 0 0

?' 0 0 i
0 0 0
¡i 0 0

?
= '0 0 0
0 0 0
0 ¡1 0

?¡ '0 0 0
0 0 ¡1
0 0 0

?
= '0 0 0
0 0 1
0 ¡1 0

?
= i'0 0 0

0 0 ¡i
0 i 0

?
= iTx

最後に [Tz;Tx] について,

[Tz;Tx] = '0 ¡i 0
i 0 0
0 0 0

?'0 0 0
0 0 ¡i
0 i 0

?¡ '0 0 0
0 0 ¡i
0 i 0

?'0 ¡i 0
i 0 0
0 0 0

?
= '0 0 ¡1
0 0 0
0 0 0

?¡ ' 0 0 0
0 0 0
¡1 0 0

?
= '0 0 ¡1
0 0 0
1 0 0

?
= i' 0 0 i

0 0 0
¡i 0 0

?
= iTy

以上の結果より，交換関係は

[Tx;Ty] = iTz

[Ty;Tz] = iTx

[Tz;Tx] = iTy

となる。一般に [Ta;Tb] = iP
c
fabcTc と書けるため，構造定数は

fxyz = fyzx = fzxy = 1; fxzy = fzyx = fyxz = ¡1
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となり，これは Levi-Civitaの記号を用いて

fabc = ²abc

と表される。


